文章编号: 0253-2239(2010)03-0676-05

差分相移键控和开关键控信号的混合传输实验

刘亮吴琳张帆朱立新陈章渊

(北京大学区域光纤通信网与新型光通信系统国家重点实验室,北京 100871)

摘要 实验完成了 42.8 Gb/s 差分相移键控(DPSK)信号和 9.95 Gb/s 开关键控(OOK)信号的混合传输。光纤链路总长 410 km,由四个放大段组成。每个放大段由标准单模光纤(SSMF)和色散补偿光纤(DCF)构成,采用掺铒光纤放大器/分布式拉曼放大器(EDFA/DRA)混合放大,42.8 Gb/s DPSK 信号采用单端检测。给出了差分相移键控信号与开关键控信号分别在单路和混合传输 410 km 后的眼图光谱图以及误码率曲线。

关键词 光通信;混合传输;差分相移键控;开关键控

中图分类号 TN929.11 文献标识码 A doi: 10.3788/AOS20103003.0676

Experimental Study of the Hybrid Transmission of 42.8 Gb/s Differential Phase Shift Keying and 9.95 Gb/s On-Off Keying Signal

Liu Liang Wu Lin Zhang Fan Zhu Lixin Chen Zhangyuan

(State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University,

Beijing 100871, China)

Abstract The hybrid transmission of 42.8 Gb/s differential phase shift keying (DPSK) and of 9.95 Gb/s on-off keying (OOK) signals is experimentally demonstrated. The length of fiber loop is 410 km. The transmission line consists of four spans, each including standard single-mode fiber (SSMF) and dispersion compensation fiber (DCF). The signals are amplified by both erbium-doped fiber amplifier (EDFA) and distributed raman amplifier (DRA). The 42.8 Gb/s DPSK signals is detected by single-ended detection. The optical power spectrum, eye diagram and the curve of bit error rate (BER) are given, both in single-channel transmission 410 km and in hybrid transmission 410 km.

Key words optical communications; hybrid transmission; differential phase-shift keying(DPSK); on-off keying(OOK)

1 引 言

近年来,随着大容量、长距离光纤通信技术的发展,许多新技术不断涌现。在这些技术当中,差分相移键控(DPSK)调制技术受到人们的重视^[1~6]。采用 双端接收的差分相移键控信号比起开关键控(OOK) 信号对于光信噪比(OSNR)的要求降低3 dB,对于非 线性容忍度也有所提高^[7]。在近几年的高速大容量 光通信系统实验中,越来越多地采用差分相移键控调 制信号^[8~11]。随着未来光通信网络的迅速发展,波分 复用(WDM)信道可能承载不同速率或调制码型的光 信号,用以满足不同的业务需求。因此研究 OOK, DPSK 等调制格式的混合 WDM 传输系统成为非常 有意义的课题。主要表现在两个方面:1)当把现有 的 OOK 系统逐步升级为 DPSK 系统同时,将会面 临 10 Gb/s OOK 与 10 Gb/s DPSK 混合传输,或者 10 Gb/s OOK 与 40 Gb/s DPSK 混合传输等几种 过渡状态;2)当来自于采用不同光调制格式的链路 汇聚在同一个网络节点时,也将会面临不同调制码 型混合传输的情形,随着传输速率的提高,必然面临 混合不同调制码型的高速(40 Gb/s 乃至更高速率)

收稿日期: 2009-03-18; 收到修改稿日期: 2009-05-05

基金项目:国家 863 计划 (2006AA01Z253,2006AA01Z261)、国家自然科学基金 (60877045,60736003)和国家教育部留 学回国人员科研启动基金资助课题。

作者简介:刘 亮(1983—),男,硕士研究生,主要从事高速光纤通信系统中调制格式方面的研究。

E-mail: fanxing0701@sina.com

导师简介: 张 帆(1975—),男,博士,副教授,主要从事高速光纤通信系统方面的研究。 E-mail: fzhang@pku. edu. cn(通信联系人) 传输的情况。

目前这一领域已经有一些文献报道,如偏振复 用正交相位偏移键控/差分正交相移键控(PDM-QPSK/DQPSK)调制信号与OOK的混合传输仿真 研究^[12],10.7 Gb/s NRZ-OOK对42.7 Gb/s DQPSK 信道的传输性能影响^[13]以及10 Gb/s OOK与 40 Gb/s NRZ-DPSK信号的混合传输研究等^[14]。因 此研究不同速率或调制码型的光信号混合传输有着 极为重要的意义。实验实现了9.95 Gb/s OOK信号 和42.8 Gb/s DPSK信号的410 km混合传输。

2 实验系统介绍

系统实验框架如图 1 所示,其中 EDFA 为掺铒光 纤放大器;BRA 为背向拉曼放大器;SMF 为单模光纤; DCF 为色散补偿光纤;DEMUX 为 40 Gb/s 波分解复 用器; MZDI 为马赫-曾德尔干涉仪。42.8 Gb/s NRZ-DPSK 信号(中心波长为 1550.70 nm)与 9.95 Gb/s NRZ-OOK 信号(中心波长为 1551.76 nm)经过 1:1耦 合器耦合后,送入传输光纤。光纤链路总长 410 km,由 四个放大段组成。每个放大段由标准单模光纤(SMF) G.652 和色散补偿光纤(DCF)构成,单模光纤的色散由 色散补偿光纤完全补偿,损耗由掺铒光纤放大器 (EDFA)和背向拉曼放大器提供的增益补偿,色散补偿 光纤的损耗由背向拉曼放大器补偿。传输后的信号先 用 EDFA1 放大,经过 40 Gb/s 波分解复用器 (DEMUX),再经过 EDFA2 放大,带通滤波器滤除噪 声。解复用后的 DPSK 信号由马赫曾德干涉仪进行解 调,然后送入 40 Gb/s 光接收机进行误码检测。 9.95 Gb/s OOK 信号直接进入 10 Gb/s 光接收机进行 误码检测。

Fig. 1 Experimental setup of hybrid transmission system

DPSK 信号与 OOK 信号的入纤功率均为 0。由 于实验设备条件限制,9.95 Gb/s OOK 信号并不是 ITU-T 的标准波长,但是在实验中使用的 DEMUX 的 3 dB 带宽为 0.7 nm,所以 9.95 Gb/s 信号可以被 完整的滤出,只是在一侧会有较多的残余白噪声。 9.95 Gb/s OOK 信号经过 DEMUX 之后的光谱如 图 2所示。在分辨率为 0.1 nm 下测得背对背 DPSK 信号的光信噪比(OSNR)为 47.3 dB,OOK 信号的 OSNR 为 49 dB。

3 实验结果

3.1 单路 OOK 信号传输 410 km 后实验结果

图 3 为 9.95 Gb/s OOK 信号传输 410 km 后的

Fig. 2 OOK signal configuration using DEMUX 光谱和眼图,从图 3(a)可看出 OOK 信号传输后中 心波长与背对背信号中心波长有 0.05 nm 偏差,这 是由于 OOK 信号激光器波长漂移引起的。图 3(b) 为 OOK 信号传输后的眼图,此时消光比为 9.1 dB, 与背对背相比(眼图消光比为 9.5 dB),信号质量有

所下降,这主要是由于传输中的累加噪声引起的。

Fig. 3 Single-channel OOK signal transmission

3.2 单路 DPSK 信号传输 410 km 后实验结果

图 4 所示为单信道 42.8 Gb/s DPSK 信号传输 410 km 后的结果。图 4(a),图 4(c)分别为放大滤波

之后的 DPSK 信号光谱和眼图。图 4(b),图 4(d)分 别为解调后的信号光谱和眼图。由图 4(d)可知解调 后的 DPSK 信号眼图消光比为 12.5。

图 4 单路 DPSK 信号传输后结果

Fig. 4 Single-channel DPSK signal transmission

3.3 混合传输后 OOK 信号的实验结果

图 5 为混合传输后 OOK 信号的光谱和眼图。

可以看到与单路传输时的情况相比,混合传输后的 OOK 信号光谱并无形状上的变化。眼图消光比为

图 5 双路混合传输 OOK 信号实验结果 Fig. 5 OOK signal of the hybrid transmission 8.8 dB,比单路传输时(9.1 dB)稍有下降。

3.4 混合传输后 DPSK 信号的实验结果

图 6 为混合传输后的 DPSK 信号光谱和眼图。 图 6(a)为输入 MZDI 的 DPSK 信号光谱,可以看到 旁边残余的 OOK 信号光谱。图 6(b)为解调后的

DPSK 光谱图,同样地在 1551.76 nm 附近存在残留 的 OOK 信号。图 6(c),图 6(d)分别为解调前后的 DPSK 眼图。解调后的 DPSK 眼图 消光比为 12.1 dB,比单路 DPSK 信号传输时(12.5 dB)有所 下降。

图 6 双路混合传输 DPSK 信号 Fig. 6 DPSK signal of the hybrid transmission

3.5 结果分析

测量了 OOK 信号与 DPSK 信号在混合传输以 及单路信号传输时的误码率曲线,如图 7 所示。单路 传输时的 OOK 信号最低误码率可达 10⁻¹²。混合传 输时随着接收机功率的逐渐增加,OOK 信号的最低 误码率只能达到 10⁻¹⁰ 量级,此时接收机功率为 -6 dBm,即使再增加功率,信号的误码率也不会下 降。从图中可以明显看出,OOK 信号在混合传输时 信号质量有所恶化。与单路传输相比,随着误码率的 降低,混合传输后的 OOK 信号功率代价逐渐增大。

图 7 DPSK 和 OOK 信号的误码率曲线 Fig. 7 BER performance of DPSK and OOK signal vs. receiver power

对于 40 Gb/s DPSK 信号来说,测得的误码率 要比 OOK 信号高;且当传输后的信号功率提高到 -1 dBm 时,40 Gb/s 误码仪会出现失锁,所以无法 继续测量。可以明显的看出混合传输后的 DPSK 信号质量要劣于单路传输时的信号。

实验中对单路与混合传输后信号测得的 OSNR 进行比较,混合传输后的 DPSK 信号 OSNR 恶化约 为 0.8 dB, 而 OOK 信号恶化约为 1.5 dB,其中会有 一定的测量误差,但也可看出信号混合传输后 OSNR 会恶化。分析其原因是两路信号在传输的过 程中出现增益竞争,导致各自的信号增益无法到达 单路传输时的状态造成的。

从眼图上看,双路信号混合传输与单信道传输相 比,眼图信噪比和消光比均有所下降。所以同单路传 输相比,混合传输方式必然存在一定的功率代价,此 代价是由于两路信号传输时的信号增益竞争和交叉 相位调制效应所引起的;其中交叉相位调制的影响占 主要部分,与已发表的仿真研究结果一致^[12]。同时 可以看到,经过前向纠错之后^[15],10 Gb/s OOK 信号 对 40 Gb/s DPSK 信号的影响并不严重,两者可以实 现无误码的 410 km 混合传输。

报

4 结 论

680

完成了 9.95 Gb/s OOK 与 42.8 Gb/s DPSK 信号的混合传输实验,给出了传输后的光谱图、眼图 和误码率曲线。混合传输后的 DPSK 信号误码率 可达 10^{-4} ,使用增强型前向纠错(FEC)技术,可使 误码率达到 1^{-12} 。

参考文献

- 1 G. Charlet. Progress in optical modulation formats for high-bit rate WDM transmissions [J]. *IEEE J. Sel. Topics Quant. Electron.*, 2006, **12**(4): 469~483
- 2 Peter J. Winzer, René-Jean Essiambre. Advanced optical modulation formats[J]. *IEEE*, 2006, 94(5): 952~985
- 3 Xu Ming, Ji Jianhua. Phasejitter of multipertur bations in differential phase shift keying dispersion managed soliton system [J]. Acta Optica Sinica, 2007, 27(5): 782~786
 徐 铭,吉建华. 差分相移键控色散管理孤子多扰动系统的相位 抖动[J]. 光学学报, 2007, 27(5): 782~786
- 4 Xu Wei, Duan Gaoyan, Fang Guangqing et al.. Analys is of polarization mode dispersin compensation performance for different modulation formats [J]. Acta Optica Sinica, 2008, 28(2): 226~232

许 玮,段高燕,方光青等.不同调制格式的偏振模色散补偿性 能分析[J]. 光学学报,2008,**28**(2):226~232

5 He Jing, Liu Limin, Chen Lin *et al.*. Generation of advanced modulation formats based on Mach-Zehnder modulators [J]. *Chinese J. Lasers*, 2008, **35**(8): 1185~1190 何 晶,刘丽敏,陈 林 等,基于马赫-曾德尔调制器的先进调

[1] 丽, 刈丽取, 陈 怀 守. 茎丁与酚-盲德小姛前奋的元近鸠 制格式的产生[J]. 中国激光, 2008, **35**(8): 1185~1190

6 Qin Xi, Chen Yong, Cao Jihong *et al.*. Influence of dispersion compensation schemes on phase noise of phase modulation systems[J]. *Chinese J. Lasers*, 2007, **34**(1): 62~66

秦 曦,陈 勇,曹继红等.色散补偿方式对相位调制系统中相

位噪声的影响[J]. 中国激光, 2007, 34(1): 62~66

- 7 A. H. Gnauck, P. J. Winzer. Optical phase-shift-keyed transmission [J]. J. Lightwave Technol., 2005, 23 (1): 115~130
- 8 S. Ferber, R. Ludwig, C. Boerner *et al.*, 160 Gb/s DPSK transmission over 320 km fibre link with high long-term stability [J]. *Electron. Lett.*, 2007, **41**(4): 200~202
- 9 Guanghao Zhu, Linn Mollenauer, C. Xu et al.. Experimental demonstration of postnonlinearity compensation in a multispan DPSK transmission[J]. IEEE Photon. Technol. Lett., 2006, 18(9): 1007~1009
- 10 A. Beling, H. Bach, D. Schmidt *et al.*. Monolithically integrated balanced photodetector and its application in OTDM 160 Gb/s DPSK transmission [J]. *Electron. Lett.*, 2003, **39**(16): 1204~1205
- H. Bissessur, G. Charlet, E. Schmidt *et al.*. 1.6 Tb/s (40×40 Gb/s) DPSK Transmission with directdetection[C]. Proc. Eur. Conf. Opt. Comm, Copenhagen, 2002, 3: 1~2
- 12 M. Bertolini. Monte-Carlo estimation of PDM-QPSK/OOK and DQPSK/OOK hybrid systems tolerance against nonlinear effects [J]. IEEE Photon. Technol. Lett., 2009, 21(1): 15~17
- 13 S. Chandrasekhar, X. Liu. Impact of channel plan and dispersion map on hybrid DWDM transmission of 42. 7-Gb/s DQPSK and 10. 7-Gb/s OOK on 50-GHz grid[J]. *Photon. Technol. Lett.*, 2007, **19**(22): 1801~1803
- 14 Mathieu Lefrançois, François Houndonougbo, T. Fauconnier *at al.*. Cross comparison of the nonlinearimpairments caused by 10 Gb/s neighboring channels on a 40 Gb/s channel modulated with various formats, and over various fiber types[C]. Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. JThA44
- 15 A. Agarwal, S. Banerjee, D. F. Grosz et al.. Ultralong-haul transmission of 40-Gb/s RZ-DPSK in a 10/40 G hybrid system over 2500 km of NZ-DSF[J]. IEEE Photon. Technol. Lett., 2003, 15(12): 1779~1781